量化投资的主要方法有哪些?

量化投资涉及很多数学和计算机方面的知识和技术,总的来说,主要有人工智能、数据挖掘、小波分析、支持向量机、分形理论和随机过程这几种。

1. 人工智能

人工智能(Artificial Intelligence,AI)是研究使用计算机来模拟人的某些思维过程和智能行为(如学习、推理、思考、规划等)的学科,主要包括计算机实现智能的原理、制造类似于人脑智能的计算机,使计算机能实现更高层次的应用。金融投资是一项复杂的、综合了各种知识与技术的学科,对智能的要求非常高。所以人工智能的很多技术可以用于量化投资分析中,包括专家系统、机器学习、神经网络、遗传算法等。

2. 数据挖掘

数据挖掘(Data Mining)是从大量的、不完全的、有噪声的、模糊的、随机的数据中提取隐含在其中的、人们事先不知道的,但又是潜在有用的信息和知识的过程。与数据挖掘相近的同义词有数据融合、数据分析和决策支持等。在量化投资中,数据挖掘的主要技术包括关联分析、分类/预测、聚类分析等。

3. 小波分析

小波(Wavelet)这一术语,顾名思义,小波就是小的波形。所谓“小”是指它具有衰减性;而称之为“波”则是指它的波动性,其振幅正负相间的震荡形式。小波分析在量化投资中的主要作用是进行波形处理。任何投资品种的走势都可以看作是一种波形,其中包含了很多噪音信号。利用小波分析,可以进行波形的去噪、重构、诊断、识别等,从而实现对未来走势的判断。

4. 支持向量机

支持向量机(Support Vector Machine,SVM)方法是通过一个非线性映射,把样本空间映射到一个高维乃至无穷维的特征空间中(Hilbert空间),使得在原来的样本空间中非线性可分的问题转化为在特征空间中的线性可分的问题,简单地说,就是升维和线性化。SVM特别适合于进行有关分类和预测问题的处理,这就使得它在量化投资中有了很大的用武之地。

5. 分形理论

分形理论既是非线性科学的前沿和重要分支,又是一门新兴的横断学科。作为一种方法论和认识论,其启示是多方面的:一是分形整体与局部形态的相似,启发人们通过认识部分来认识整体,从有限中认识无限;二是分形揭示了介于整体与部分、有序与无序、复杂与简单之间的新形态、新秩序;三是分形从一特定层面揭示了世界普遍联系和统一的图景。

由于这种特征,使得分形理论在量化投资中得到了广泛应用,主要可以用于金融时序数列的分解与重构,并在此基础上进行数列的预测。

6. 随机过程

随机过程(Stochastic Process)是一连串随机事件动态关系的定量描述。

研究随机过程的方法多种多样,主要可以分为两大类:一类是概率方法,其中用到轨道性质、随机微分方程等;

另一类是分析的方法,其中用到测度论、微分方程、半群理论、函数堆和希尔伯特空间等,实际研究中常常两种方法并用。另外组合方法和代数方法在某些特殊随机过程的研究中也有一定作用。

研究的主要内容有多指标随机过程、无穷质点与马尔科夫过程、概率与位势及各种特殊过程的专题讨论等。其中,马尔科夫过程很适于金融时序数列的预测,是在量化投资中的典型应用。

版权声明:本篇文章(包括图片)来自网络,由程序自动采集,著作权(版权)归原作者所有,如有侵权联系我们删除,联系方式(QQ:452038415)。http://www.shendujiaoyi.com/2947.html
返回顶部